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ABSTRACT:  

Online algorithms have received much blame for polarizing emotions during the 2016 

U.S. Presidential election. We use transfer entropy to measure directed information flows 

from human emotions to YouTube’s video recommendation engine, and back, from 

recommended videos to users’ emotions. We find that algorithmic recommendations 

communicate a statistically significant amount of positive and negative affect to humans. 

Joy is prevalent in emotional polarization, while sadness and fear play significant roles 

in emotional convergence. These findings can help to design more socially responsible 

algorithms by starting to focus on the emotional content of algorithmic recommendations. 

Employing a computational-experimental mixed method approach, the study serves as a 

demonstration of how the mathematical theory of communication can be used both to 

quantify human-machine communication, and to test hypotheses in the social sciences.  

https://doi.org/10.1080/19312458.2018.1479843
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Communicating with algorithms: A transfer entropy analysis of emotions-based escapes 
from online echo chambers 

Algorithms intermediate almost all of the roughly 3.5 hours per day that each American 
communicates online (Center for the Digital Future, 2016). Algorithms decide how fast 
information is transferred and what information is presented (Hannak et al., 2013; Lazer, 2015). 
The proactive role of algorithms in communication processes can be conceptualized as an active 
dialogue between users and algorithms. Users communicate preferences (advertently or not), 
which are interpreted by algorithms (e.g., by recommender engines or bots), which then send 
responses back to users, who receive, interpret, and react to the algorithmic reply. In this study, 
we quantify the flow of information in the conceptual communication channel between users and 
socially responsive algorithms.  

Particularly, we first demonstrate that human emotions (joy, fear, sadness, etc.) are 
communicated to the selection mechanism of videos recommended by YouTube (via an 
individuals’ choice of search terms), and second that the video’s emotions influence how the 
viewer feels after being exposed to the videos. We study emotions related to Presidential 
candidates from the 2016 U.S. election. Rather than making assumptions about how 
recommender systems work, we systematically manipulate YouTube’s real-world recommender 
system to create stimuli in a mixed-method computational-experimental approach. 

 

Algorithmic Filter Bubbles and Echo Chambers 

 In the two-step communication between algorithms and humans it is common (but by no 
means obligatory) that the algorithm takes on the role of a confirmatory communication partner 
that reassures and often reinforces received information through positive feedback. This leads to 
the notorious “filter bubbles” (Pariser, 2011). The separation of users from contradictory 
information also gathers likeminded people in similar communication spaces, which then creates 
reinforcing echo chambers (Jamieson & Cappella, 2008; Sunstein, 2001). The resulting dynamic 
is nowadays widespread in online networks (Colleoni, Rozza, & Arvidsson, 2014; Garrett, 2009a), 
and has resulted in detectable tendencies of opinion extremism and political polarization (Bakshy, 
Messing, & Adamic, 2015; Bessi et al., 2016). 

 The prevalence of this reinforcing communication tendency of algorithms is mainly due to 
two reasons. On the one hand, people tend to prefer confirmatory and harmonious communication 
over confrontational and critical exchanges (Iyengar & Hahn, 2009; Mutz, 2006). Exploiting this 
keeps users engaged with the offered service and therefore maximizes the resulting economic 
profit. For example, YouTube explicitly works with what it calls a watch time optimization 
algorithm (YouTube, 2016b). On the other hand, self-reinforcing responses are much easier to 
program than any other kind of dialectical or critical response. This is simply because there are 
relatively few ways to agree with somebody, but infinite ways to disagree. Mathematically, while 
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there are relatively few ways to reinforce the direction of an identified vector in a multidimensional 
vector space, there are innumerable ways of not doing so. This makes this issue currently a hot 
topic for the technology and social media industry (Dreyfuss, 2016; Jigsaw, 2016).  

 

The Role of Emotions 

 This article contributes to this growing literature by investigating which kind of algorithmic 
responses can help citizens burst the filter bubbles and escape online echo chambers? We already 
know that confronting users with diametrically opposed extremes also lead to opinion polarization 
(Keegan, 2016, Sherif & Hovland, 1961, Wong, Levin, & Solon, 2016). This is unfortunate, 
because they are mathematically relatively easy to identify. At the same time, we also know that 
people do not necessarily avoid all and every kind of challenging viewpoints when online (Garrett, 
2009b, 2009a; Garrett & Stroud, 2014; Gentzkow & Shapiro, 2011). The big question becomes 
how to choose opinions that are neither reinforcing nor diametrically opposed, but still both 
engaging and challenging. 

 In this article, we propose that the research for socially responsible algorithmic responses 
can be enlightened by paying attention to how emotions flow to and from algorithms. Emotions 
have long been linked to political preferences (Glaser & Salovey, 1998; Marcus, 2000), political 
conversation (Cho, 2013), and political participation (Valentino, Brader, Groenendyk, 
Gregorowicz, & Hutchings, 2011).  

 It has not only been shown that online communication is laden with emotions (Derks, 
Fischer, & Bos, 2008; Holyst, 2017; Vincent & Fortunati, 2009), but that emotions can be 
transferred through algorithmic choices (Kramer, Guillory, & Hancock, 2014). Furthermore, 
research has shown a strong link between emotions and the strengthening or attenuating of 
opinions and partisanship, and therefore polarization (Nabi, 2003). For example valence (positive 
and negative affect) has shown to be a strong indicator of homophilic clustering (Himelboim et 
al., 2016). Anger results in extremist responses (Abelson et al., 1982), in pro-attitudinal partisan 
and ideological beliefs (Hasell & Weeks, 2016; Weeks, 2015), and in unwillingness to engage in 
contrasting dialogues (Valenzuela & Bachmann, 2015).  

 Our methods aim at quantifying the contagious effect of emotions from users to 
personalized online content, and then from algorithmically recommended online content back to 
users. Our analysis demonstrates the reinforcing effect of human-algorithm convergence or 
polarization of emotional states.   
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Method 

 We use a combination of experimental and computational methods to obtain the required 
variables to flesh out the information flows in our human-algorithm communication channel. We 
started by using a deep neural network for semantic analysis to code the general emotions of 
recommended videos on YouTube on the day of our experiment. In parallel we asked participants 
about their political search preferences, which we used to bias the recommendations of a virgin 
YouTube account per participant. Participants were then invited into the lab to complete a 
questionnaire about the emotions they felt about each of the two major-party candidates. Next, 
they watched the top-5 recommended videos from the account that was biased with their political 
preferences. We also did a semantic analysis on the emotions of those videos. Finally, participants 
repeated the candidate-emotion questionnaire to capture any resulting change. This gave us four 
distinct evaluations of emotional states: videos pre-intervention (baseline), user pre-intervention, 
videos post-intervention (recommendations), users post-intervention. We quantify the involved 
information flow of emotions from users to recommendations and from recommendations to users 
with transfer entropy (Schreiber, 2000). It is a directed measure of influence from the toolbox that 
grew out of Shannon’s “mathematical theory of communication”  (Shannon, 1948, p. 379). We 
feel that this is framework provides the natural choice to model information flows in 
communication channels such as this one. Our analysis focuses on differences in the transfer of 
emotional information among users of different partisanship, candidate preferences, ideology, 
individual and social influences, and in the polarization or convergence of their emotions.  

 

Participants 

 Participants in this study included a total of 73 upper-level undergraduate students from a 
large university in the western United States. All participants in this study were volunteers and 
were awarded extra credit for their participation (average 3rd year of a bachelor degree, 22 years 
old). 67% were female, 23% only white, and 51% only Asian.  

 

Materials 

 Each participant took a pre-experiment online survey that contained a list of nine 
campaign statements copied from each of the two candidates’ official campaign websites 
(Hillary Clinton and Donald Trump). These were statements like “Making college debt free and 
reducing student debt” and “Build a wall against illegal immigration at the Mexican border”. We 
added four related search terms for each candidate identified by Google Trend, such as “Trump 
lies” and “Lock her up”. This gave us a list of 13 statements per candidate, which we mixed 
randomly in each survey. In this pre-survey, we asked each participant to rank this list of 
statements twice, according to two different criteria. 
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First, we asked everybody: “If you would search online for specific topics of the 2016 
Presidential election that interest you personally, what would these topics be? Please rank 10 (out 
of 26) of the following topics according to your personal interest.” We categorize these responses 
as “individual” interests. 

We then repeated the same list of 26 statements and asked: “When online (at social 
media, email, etc.), which of the following topics are you likely to see posted or recommended 
by your friends and online circles? Concentrate on the top 10 (out of 26) statements that could 
come from one of your online contacts”. We categorize these responses as “social” interests. 

We then chose to experimentally contrast both interests because surveys have shown that 
users obtain their online input from both individual search results and recommendations from 
their (more or less algorithmically mediated) online friends (Bakshy et al., 2015; Gottfried & 
Shearer, 2016). In other words, people click on and consume information that shows up as the 
result of their own search, as well as information that is presented to them as the result of the 
interests of friends.  

We used these pre-survey responses to train a YouTube recommender system (detailed in 
the section: Pre-Experiment Algorithmic Biasing) and then exposed participants in two different 
experimental conditions to the two-different sets (“individual” and “social”) of YouTube biased 
videos (detailed in the section: Design and Procedure). 

 

Pre-Experiment Algorithmic Biasing 

We chose YouTube’s video recommender engine as our subject of study. In the words of 
Google engineers “YouTube represents one of the largest scale and most sophisticated industrial 
recommendation systems in existence” (Covington, Adams, & Sargin, 2016, p. 191). During the 
time of this study in 2016, this video-sharing website was the 2nd most visited page on the 
Internet (Alexa, 2017). It is used by almost every third internet user and every seventh person on 
Earth (over 1 billion users). YouTube reaches more 18-49 year-olds than any cable network in 
the U.S. (YouTube, 2016a). One in five YouTube users get news from it, which makes YouTube 
the second largest social media news provider in the U.S. (after Facebook) (Gottfried & Shearer, 
2016). Polarization has been shown to result from YouTube content (Bessi et al., 2016). 

We used the selected campaign statements from the pre-survey to bias YouTube’s 
recommendation engine without the knowledge of the participants. It is important to work with 
the actual online algorithm that creates personalized results, not with proxy. Today’s online 
algorithms are essentially black boxes. While they are still deterministic, their complexity and 
collective dynamics make their outcomes difficult to predict (Lazer, 2015). Some functionality 
may be exerted intentionally, while other aspects might be incidental (Diakopoulos, 2015). 
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Despite their obfuscatory inner workings, per definition, any algorithm must always have an 
input and output, which offers the two instances in which we evaluate their communicative role. 

We start by collecting the top-five trending videos on the general YouTube site 
(youtube.com/feed/trending). These videos are recommended based on general trends across 
YouTube. We will use this as a control variable.  

For the biasing of accounts, we used a combinatorial logic to combine the top seven 
selected statements from the pre-survey of each participant into 70 search terms (top seven 
search terms + 21 pairwise combinations + 35 randomly selected three-part combinations + top 
seven search terms in reverse order). Our goal was to work with the strongest opinions of the 
subject, but also with a long enough list of search term to affect YouTube’s recommender engine 
(we ran tests for its adaptive sensitivity).  

We wrote a Python script in PyCharm that worked with a Chrome browser extension to 
bias one virgin YouTube accounts per search term list. This allowed us to bias YouTube 
accounts with users’ preferences without the explicit knowledge of the users. Once started, the 
script logged into a clean YouTube account, then took the first term of the list of 70 and searched 
YouTube. The script opened the first recommended video and watched it for seven seconds in 
order for it to get adopted in YouTube’s watch history. It justifies to click on the first 
recommended video as it has been shown that the highest ranked search results are exponentially 
more likely to be clicked than lower ranked links (Bakshy et al., 2015). It is also important to 
watch the video, as we found that YouTube’s recommendation algorithm works on the basis of 
the watch history, not on basis of the search history. We speculate that the reason for this is once 
again the fact that the final consumption of online content is a mix of own search results and 
input from their online friends (Gottfried & Shearer, 2016). The fact that YouTube seems to 
consider the possibility of both influences is another justification to investigate both sources. The 
script then scraped the title, description, and the (often automatically created) transcript of the 
video (which is available for more than two-thirds of the videos).  

After doing the same for the rest of the 70 search terms, the script scraped the 
recommended videos presented at youtube.com/feed/recommended. From this list, we selected 
the top-five recommended videos. In case there were extremely unpolitical videos within those, 
we maximally skipped two unpolitical videos. This gave us a list of five YouTube videos per 
participants, based either on their own preferences (“individual”) or based on what they would 
expect to see from their social environment (“social”). 
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Design and Procedure 

The experiment was carried out the week after the 2016 U.S. Presidential election, during 
November 14 – 18. Participants were assigned to two experimental conditions: to a group that 
watched YouTube videos biased through their “individual” list of interests (N = 35) and a second 
group that watched YouTube videos biased through their “social” list of interests (N = 38). 

At the first step, irrespective of the experimental condition, the participants filled out a 
pre-survey with a set of questions that asked participants about their demographics and their 
feelings toward each Presidential candidate. It asked them to rate positiveness and negativeness 
(valence) on a feeling thermometer scale between 0 and 100, and presented them with a five-
point scale to evaluate the frequency they felt anger, fear, disgust, joy and sadness toward each 
candidate: never, some of the time, about half the time, most of the time, always. 

At the next step, based on their respective experimental condition (“individual” vs 
“social”), we had the participants watch five algorithmically biased YouTube recommended 
videos for a total of 20 minutes, advising them to spend some 3-5 minutes on each video. These 
videos were linked to a new YouTube account we created for each user. At the final step, we 
asked them to fill out a post-survey with a total of 21 questions that included the same questions 
about their feelings toward the Presidential candidates. 

After the surveys were completed and turned in, the researchers asked the participants if 
they had any questions and they were thanked for their participation. 

 

Analytical Strategies and Measures 

Over the second half of the last century, Shannon’s (1948, p. 379) “mathematical theory 
of communication” has developed into a comprehensive theory known as information theory, 
which not only consists of hundreds of theorems and proofs (Cover & Thomas, 2006; MacKay, 
2003), but also provides the theoretical basis of today’s omnipresent communication networks 
(Gleick, 2011). While social scientists have struggled with finding value in its application to 
social systems (with notable exceptions, Attneave, 1959; Ellis & Fisher, 1975; Hawes & Foley, 
1973; Krippendorff, 2008), recent studies have shown the usefulness of applying information 
theoretic measures like transfer entropy to social science and social media data (Baek, Jung, 
Kwon, & Moon, 2005; Borge-Holthoefer et al., 2016; Ver Steeg & Galstyan, 2012). In the 
following sub-sections we discuss how the “mathematical theory of communication” guides our 
analytical strategies in answering the research question. 

The human-machine communication channel. Figure 1 uses the traditional 
representation of information theory (Cover & Thomas, 2006, Chapter 7) to outline the complete 
communication channel, consisting of three sub-channels. Each rectangular box represents a 
random variable that codifies an emotion into different categorical values (i.e. low vs. high). The 
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transitions between them (gray lines) represent mutual dependence, expressed through the joint 
distribution of the variables on the left and right of the connection. Information theory quantifies 
the information flow through such channels in terms of the intertwindness of the joint 
distributions among these variables.   

We start our analysis with the benchmark of unbiased trending videos presented by 
YouTube’s trending algorithm (algopre). This reflects the general mood prevalent on YouTube at 
the time. In our analysis, we will use this as a baseline control variable. We then measure the 
user’s opinion before the intervention (userpre). This is collected through the pre-survey on a five-
point scale that evaluates the frequency students felt anger, fear, disgust, joy and sadness toward 
each candidate. The first sub-channel conceptualizes the relation between the general mood of 
trending videos on YouTube, and the feelings of the human user about each candidate. Based on 
the human search term preferences, the recommendation algorithm presents selected videos with 
certain emotional content (algopost). The relation between the participants’ emotions and the 
emotional content of the videos represents the second sub-channel. Through the consumption of 
the video, the posterior feelings of the human might be affected (userpost, again collected through 
the post survey on a five-point scale). The third sub-channel represents the information flowing 
from the emotions of the video to the emotions of the consumer. Once the overall channel is 
represented in such fashion, it is straightforward to analyze it with the well-established 
information theoretic tools for noisy channels.  

 
Figure 1: Schematic representation of the communication channel with its three sub-channels 
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Figure 1 also depicts three illustrative toy examples that help to expose the nature of the 
involved information flows. The first one is illustrated with double-lined arrows and suggests 
that information flows from a general feeling of anger in society (resulting in angry trending 
videos on YouTube), to a particular angry user, which leads to video recommendation with angry 
content, and an angry user after consuming the video. This is the classic case of noiseless 
communication in a communication channel (in this case, over three sub-channels). It is also the 
standard assumption of how emotions flow in political communication, as it is for example both 
assumed and found that “positive moods induce more positive judgments and negative moods 
induce more negative judgements” (Marcus, 2000, p. 230). 

However, in a ‘noisy channel’ (this is the technical term for a channel that has not only 
‘straight transitions’, but also ‘cross-overs’), information also flows by crossing among different 
variables. The second case (illustrated with dashed arrows) also detects a noiseless transition 
from sad general videos to sad personalized video recommendations, but, for some reason, fear 
in a user also leads the recommender system to suggest sad videos. It would therefore be helpful 
to separate how much information flows through the video’s autocorrelation (from sad trend to 
sad recommendation) and how much of the emotional information contained in the 
recommended videos is caused exclusively by the user’s emotions. The same logic applies to the 
autocorrelation between pre- and post-opinions of the users, also shown in the third case in 
Figure 1. This aims at isolating the information transfer from algorithm to the user, while 
controlling for the fact that initially fearful users will continue to be fearful. Transfer entropy was 
developed to evaluate such causal effects in communication channels. 

Transfer entropy. Transfer entropy is a conditional measure of dependence in 
information theory. Information theory defines information in terms of uncertainty and frames 
uncertainty in terms of probability theory (Cover & Thomas, 2006; MacKay, 2003). The less 
uncertainty, the more information and vice versa. The two basic measures of information theory, 
entropy and mutual information, have an analogous relation to the more well-known measures of 
variance and covariance (e.g., Garner & McGill, 1956). Variance and entropy both measure 
diversity, while covariance and mutual information both measure association (Li, 1990). Mutual 
information measures the uncertainty of one variable contained in another, or, in other words, the 
uncertainty resolved about a second variable when knowing the first.  

Just like a covariance or correlation, mutual information does not imply causality. What 
one variable reveals about another is mutual, which makes it a symmetrical measure. Transfer 
entropy is a conditional mutual information (Schreiber, 2000). The conditional control for a 
time-delay among three variables introduces Markovian shielding and therefore directionality 
through temporal delay. This is often depicted with the help of Venn-diagrams (James, Ellison, 
& Crutchfield, 2011; Yeung, 1991), where the circles represent entropies and their intersection 
their mutual information (Figure 2). For example, Figure 2a highlights the transfer entropy that 
flows from user preferences Upre into the algorithmic video recommendations Apost, while 
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controlling for the influence of the general mood on the platform, Apre. The variables Apre 
measures the emotional content of recommended videos before personalization (i.e. trending 
videos), and Apost the emotional content of the recommended videos after personalization. Apre 
surely has an innate effect on the resulting Apost, which would confound our interest in measuring 
the information flow from user to algorithm. Transfer entropy controls for the autocorrelation 
between both time-delayed measures, and isolates the mutual information between the user, Upre, 
and Apost (quantified by the respective light-orange overlaps in the diagram). 

 
Figure 2: information diagram representation of both involved transfer entropies: (a) U => A, (b) 
A => U, (c) U => A and A => U, (d) significance testing of the transfer entropy measurement by 
generating a number of surrogate source datasets drawn from the original cause.  

 
 
 

 
 

 

 

 

 

Transfer entropy can be viewed as a non-parametric equivalent for the more well-known 
Granger causality (Amblard & Michel, 2011), with the difference that it naturally also works for 
nonlinear categorical variables. Loosely speaking, what Granger causality is to correlations, 
transfer entropy is to mutual information. Like Granger causality, if the future values of a 
variable 𝐴𝐴 contain information about the past of another variable 𝑈𝑈, that were not contained in 
past observations of 𝐴𝐴, then it is said that information is transferred from 𝑈𝑈 to 𝐴𝐴. In principle, the 
mutual information between both is symmetric (undirected), but the experimentally introduced 
time delay allows to establish directionality.   
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In practice, one convenient way of calculating transfer entropy is to take the difference 
between conditional entropies, 𝐻𝐻. In particular, the conditional entropy of Apost, conditioned on 
both Apre and Upre, and the entropy of Apost conditioned on Apre: 

𝑇𝑇𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝→𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐻𝐻�𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝� −  𝐻𝐻�𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝�

= �𝑝𝑝( 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝�𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝,𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝)
𝑝𝑝�𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝)

 

where the base of the logarithm defines the informational unit, in this case, bits. The formula 
applies equivalently for the information transfer from the recommended video Apost to the post-
intervention feelings of the user Upost: 𝑇𝑇𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝→𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (Figure 2b). Here we control for the 
autocorrelation effect of the human emotions pre-intervention, isolating the information flow 
from the algorithmic recommendation to the user’s emotions post intervention. Taken together, 
Figure 2c visualizes the information transfer from user preferences to algorithmic 
recommendations and from there back to the user.  

Semantic analysis. Categorical emotion analysis typically yields half a dozen of different 
basic emotions (Ortony, Clore, & Collins, 1990), usually including the big five emotions of 
anger, fear, disgust, joy, and sadness (Ekman, Sorenson, & Friesen, 1969; Philippot, 1993). The 
dimensional view of emotions takes a complementary view (Bucy, 2000), usually including 
emotional valence (positive and negative affect) and arousal (Lang, 1988). We separately test for 
the big five emotions and additionally for emotional valence.  

We used AlchemyLanguage from the IBM Watson Developer Cloud (now called 
“Watson Natural Language Understanding”) to execute a sentiment analysis that evaluated the 
feelings attached to the videos based on the scraped title, description, and transcript. 
AlchemyLanguage is a collection of APIs that offer text analysis through natural language 
processing. Before it was acquired by IBM in 2015, it was known as AlchemyAPI, a deep 
learning machine learning tool for natural language processing (specifically, semantic text 
analysis, including sentiment analysis). It evaluates positiveness and negativeness (valence) on a 
scale from -1 to +1, and assigns values between 0 and 1 to the presence of anger, fear, disgust, 
joy, sadness (both to the third digit).  

Before working with this tool, we followed the advice to validate the automatic content 
analysis methods (Grimmer & Stewart, 2013), and asked 91 students (that did not participate in 
our experimental subjects) to watch eight trending YouTube videos and to classify the emotions 
contained in the video on a scale from 0 to 100 for extra credit of a course. Both the correlation 
coefficients and the Mean Absolute Error (MAE) place the results on the cutting edge of 
semantic emotions detection: valence (R: 0.87, MAE: 0.36); anger (R: 0.40, MAE: 0.18); disgust 
(R: 0.55, MAE: 0.16); fear (R: 0.23, MAE: 0.21); joy (R: 0.49, MAE: 0.22); sadness (R: -0.51, 
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MAE: 0.20) (compare with Paltoglou, Theunis, Kappas, & Thelwall, 2013; Thelwall, Buckley, 
Paltoglou, Cai, & Kappas, 2010).1  

It turned out that the total of 365 videos watched by our 73 participants consisted of 121 
different videos. 68% of these contained a written transcript. We evaluate the feelings separately 
for the title, the description and the transcript (if available). After some preliminary testing, we 
decided to create the simple average of these values to obtain the final estimation for each video 
(either with or without a transcript). This mainly aims at balancing the uneven weight of each 
(the text of transcripts would dominate if evaluated jointly) and to give more visible roles of the 
title and description. The total 365 videos had the following average emotional scores: 
postiveness/negativeness (M = 0.007; SD = 0.352), anger (M = 0.266; SD = 0.150), fear (M = 
0.151; SD = 0.094), disgust (M = 0.177; SD = 0.096), joy (M = 0.215, SD = 0.160), sadness (M = 
0.266, SD = 0.112). For participants’ emotions, we created averages of the values of the five 
videos watched by each participant, giving us one score per feeling per participant.   

Dichotomization. To calculate the information theoretic measures, we need to convert 
our data into normalized probability distributions of a categorical random variable. Our measures 
of emotions are already normalized (survey on a five-point scale, and the computational semantic 
analysis between -1 and +1, and 0 and 1). We convert all our emotion measures into a binary 
variable. We assign 0s to values below the variable’s arithmetic mean (low on this emotion), and 
1s to values above it (high on this emotion), and then count the frequency of their appearance. 
The reason for this high level of coarse-graining is the inherent trade-off between measurement 
detail and sample size. Our small sample size forces us to work with a simple binary distinction. 

Different conditions. In our analysis, we condition the binary emotional variables on 
different conditions (i.e. pre- vs. post-intervention; individual vs. social recommendations; 
Clinton vs. Trump; Liberal vs. Conservatives). These are straightforward subgroups of our 
samples. Our conditioning variable of emotional polarization requires some additional 
elaboration. We calculate it for each feeling separately based on each pre- and post-survey 
evaluation of each participant. We identify polarization if emotional strength moves away from 
its pre-intervention mean (‘toward the poles’), and convergence if it moves closer toward it 
(‘away from the poles toward the mean’). While there are several variables that satisfy this 
definition, the simplest one consists of taking the absolute value of the pre-post mean difference: 

Polarization score: |∆𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇| − |∆𝑃𝑃𝑃𝑃𝑃𝑃|, with 

|∆𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇| = ABS �𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − E�𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝�� 

|∆𝑃𝑃𝑃𝑃𝑃𝑃| = ABS �𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 − E�𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝�� 

                                                           
1 The negativity of sadness is not worrisome for our purposes, since the strength of information flow is measured 
based on symmetric distributions. 
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where the expected value 𝑃𝑃[… ] is taken over all pre-intervention scores of this particular feeling 
score. This implies polarization away from the mean if the score is positive; convergence toward 
the mean if it is negative; and no change in emotions if it is zero.  

 

Statistical Test 

We need to make sure that our results are not mere artifacts that would arise in any case 
due to random fluctuations. Since no parametric distribution of errors is known for the nonlinear 
measure of transfer entropy, suitable surrogate data is needed to test the null hypothesis of 
independent time series and therefore an absence of causality. This suggests creating statistical 
ensembles of a randomization of the same data (i.e., by drawing randomly from the original 
distribution), such that the causal dependency of interest is destroyed, but trivial dependencies of 
no interest are preserved (see Figure 2d). This means that if causality is suggested such that Y => 
Xt+1, then only Y is randomized. The rationale is to destroy the causal structure of Y on future 
values of Xt+1, under the null hypothesis H0 that the changes Xt => Xt+1 have no temporal 
dependence on the potentially causing source Y. This procedure can be seen as a bootstrap under 
the null hypothesis because any dependence is eliminated. This method was originally extended 
from a similar logic applied to Granger causality (Chávez, Martinerie, & Le Van Quyen, 2003; 
Verdes, 2005) and we adopt it from its successful application in neuroscience research (Lizier, 
Heinzle, Horstmann, Haynes, & Prokopenko, 2011; Vicente, Wibral, Lindner, & Pipa, 2011). 

We can then determine a one-sided p-value of the probability of observing a transfer 
entropy value greater than the ones expected assuming H0. This can be done by simply counting 
the proportion of observed information flows that produce larger transfer entropy than the 
randomized one. In other words, a ‘significant information flow’ means that it is likely that the 
observed amount of transferred information is larger than the information that could be expected 
to flow due to random chance. For each case, we calculate the transfer entropy of 500 surrogate 
distributions, and given the stringency of our test, distinguish among three significance levels: *p 
< .1; **p < .05; ***p < .01. 

Note that given that we create the surrogate data for our null hypothesis with as little of a 
disturbance of the original distribution as possible to create the independence condition, large 
information flows must not automatically be statistically significantly larger than randomly 
expected. This depends on the skewness of both involved distributions and the remaining degrees 
of freedom to create a joint distribution. We will find this subtle point in several of our results 
(i.e., it is clearly shown in the case of convergence for conservative subjects in Figure 5). 
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Results 

We calculate the transfer entropies for each of our six emotions for both sub-channels: U 
=> A and A => U. We illustrate the different amounts of information in a way that adds up the 
informational bits transmitted by different emotions. This is a choice of representation (as we 
calculate the information transfer and its significance for each emotion separately), but 
psychologically justified by the currently dominant multiple-channel theory of emotions, which 
presumes that affective reactions derive from multiple parallel evaluative processes in multiple 
dimensions (Marcus, 2000).  

From Humans to Algorithms and Back 

We start by evaluating the general emotional flow from the human preferences to the 
recommended videos, and from there, back to the final feelings of the consumer. For this, we add 
up the feeling scores of the pre- and post-surveys toward both candidates (Clinton and Trump) 
and then create a single binary distribution for each of the emotions. We calculate the resulting 
transfer entropy based on the combined sample of all 73 users. 

Figure 3 shows that both the transfer entropy from user to algorithm (U => A) and from 
algorithm to user (A => U) has components that are significantly different than what random 
fluctuations would suggest. This suggests that users’ emotions had a measureable influence on 
the algorithm and that the recommender algorithm had a measurable influence on the users’ 
emotions. Figure 3 also suggests that the flow of information from user preferences to 
recommended videos seems smaller than the flow of information from recommended videos to 
user emotions. In contrast to the skewed emotional transfer from human to algorithms, the 
emotional information transmitted in the sub-channel from algorithms to human is also more 
equally distributed. Together both seems to suggest that humans are susceptible to more and 
more diverse emotions than algorithms. An alternative explanation might be that U => A is a 
more indirect channel, since it is mediated by the search topics (campaign promises). For the 
information flow of U => A, only joy and sadness are statistically significantly larger than 
expected (total of some .08 bits), while in the 
flow of A => U only valence causes a 
statistically significant amount of emotional 
information (some .05 bits).  

 

Figure 3: Transfer entropy of emotional 
information from human to algorithmically 
recommended videos, and back, from the 
algorithmic result to the human user, in bits. 
Numerical labels display significance test 
results. ** p < .5, * p < .1, no label p > .1.  
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Individual and Social Recommendations 

We then separated both experimental groups, and distinguished between the 
recommendations that stem from one’s individual preferences and the recommendations that 
result from preferences of the perceived social environment. We randomly chose a group of 
subjects for which we biased accounts with the individual list of interests, and another one with 
the hints of social influence. Figure 4a shows that recommendations produced by one’s 
individual search terms leads to some significant information flows, while perceived social 
preferences do not. Despite all homophily, this is to be expected, as one’s own direct preferences 
are more likely to trigger personally relevant emotions in videos than the indirect preferences of 
one’s friend. For one’s individual preferences, we again find joy and sadness to be significantly 
larger as expected, as well as anger.2 Valence is again significant for the flow from algorithmic 
recommendations to users (joy gets close with p = .108). 

 

Figure 4:  Transfer entropy of emotions over both sub-channels, in bits (a) distinguishing 
recommendations based on individual preferences and on social preferences of friends, (b) 
additionally distinguishing emotions toward candidates. ** p < .5, * p < .1, no label p > .1. 

    
 

Figure 4b distinguishes among feelings toward each candidate individually, which 
provides more significant results, also for socially perceived input. This is likely to be a 
reflection of the fact that feelings from different people are more pronounced toward different 
candidates (while aggregation creates moderating effects). For the case of individual 
recommendations for Clinton, a highly significant amount of joy is flowing, both from users to 
algorithms and from algorithms to human users (the largest blocks in the two left bars). We 
observe a significant amount of sadness in the recommended videos from the perceived social 
environment of the candidate who lost the election (see third bar from left in Figure 4b). For the 
                                                           
2 Comparing this with Figure 3 reminds us that informational measures do not decompose linearly among their 
constituents, since they are based on joint probability distributions that often exhibit nonlinear relations. 



Communicating with algorithms. 16 
 

 
 

case of the election winner Trump, we find many significant emotional information transfers, 
including anger, disgust, and joy from humans to algorithms, and disgust and sadness from 
algorithms to human users.  

Figure 4 also complements an established finding in the literature. Anger has often been 
linked to individual considerations, and fear to societal factors (Goodall, Slater, & Myers, 2013; 
Nabi, 2003). Both Figure 4a (for the case of ‘individual’). Figure 4b (for the case of 
‘individual+Trump’) reconfirm this finding as we find a significant amount of anger information 
flowing from the human to one’s own recommendations, but not into social recommendations 
from friends. In both representations, we also find larger flows of fear in socially embedded 
friends’ recommendations. But these are not significant in any of the cases. 

Comparing Figures 4a and 4b also shows that despite all homophily with the social 
environment, emotional causations on basis of one’s own individual preferences are different 
from the social preferences of perceived friends, especially when distinguishing between 
candidates. In the case of Clinton, joy plays a much more prevalent role in one’s individual 
flows, while sadness dominates the social flow. For the case of Trump, the amount of 
information that flows from the perceived preference of friends to recommendations is quite 
small, especially when compared to the significant flows from one’s own preferences to 
algorithmic recommendations.  

The Emotions of Polarization 

Based on our polarization score (see above), we now analyze the emotions that flow 
conditioned on the cases of emotional polarization and convergence.3 We calculate the 
polarization score for each emotion separately, which means that the same person can be part of 
the polarization group for one emotion, but part of the convergence group for another emotion. 
We jointly analyze both the group biased with individual-, and the one biased with social 
influence (resulting in mixed effects on average, much like in real online environments), but 
distinguish between both candidates. Additionally, we also distinguish among users that lean 
liberal (extremely liberal, liberal, and slightly liberal, N = 42) and those that lean rather 
conservative (including moderate, slightly conservative, conservative, extremely conservative, N 
= 25), excluding ideological agnostics (6 of our 73 subjects). It justifies joining moderates with 
conservative-leaning subjects, since for one, the conservative candidate was originally an 
independent, and because in California there is a much higher barrier of categorizing oneself 
conservative than liberal.  

In the case of emotional convergence (left side in Figure 5), we find that a significantly 
large amount of both fear and sadness flow through our channels (four significant sadness and 
three significant fear values). In specific, a significant amount of fear flows from the preferences 
                                                           
3 We do not have to consider the case in which there is no change in emotions (our polarization score is 0, since 
variables Upre and Upost are identical). In this case, no information transfer is present. 
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of the human to cause changes in the emotional constellation of the algorithmic recommender 
system (see the squared bars U=>A). For the case of emotional polarization, we detect a 
significantly large flow of joy throughout both channels (five framed blue bars). Note that this 
can be the presence or absence of joy (see below). For the cases of conservative ideology and its 
candidate Trump, we detect a significant amount of sadness and fear (right bars in Figure 5).  

While the literature has often detected the role of anger in polarization (Abelson et al., 
1982; Hasell & Weeks, 2016; Valenzuela & Bachmann, 2015; Weeks, 2015), we do not find any 
significant flow of anger in the case of polarization, especially not when compared to the role of 
joy in polarization. Actually, we find proportionally larger amounts of angry emotions flowing in 
the case of convergence, but they are not statistically significant.  

 

Figure 5: Transfer entropy of emotional information over both sub-channels for the case of 
emotional convergence and polarization, for the general case, conditioning on each candidate, 
and on liberal and conservative ideological leaning, in bits. ** p < .5, * p < .1, no label p > .1. 

 
 

At this point, it is important to emphasize an often-confused fact about information 
measures. Measures from information theory are based on a probability distribution of 
categorical variables, while the different realizations of the involved random variables are not 
assigned any semantic meaning. This provides information theoretic measures its nonlinear and 
nonparametric strengths, but also leads to the fact that they do not differentiate between the 
content. For example, a large amount of information transfer related to disgust does actually not 
tell us if it is the presence or absence of disgust that contains this information. The magnitude of 
the resulting information flow does not depend on the decision if we encode the above average 
presence of disgust with 1 or with 0. The aggregate measure of the probability distribution of the 
random variable does not discriminate among the content the information stems from.  
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Discussion 

Based on a mixed methods approach that includes both experimental and computational 
components, we quantified emotional information flows between humans and responsive 
algorithms. We explored how emotional information flows between algorithms and human based 
on various conditions, including partisanship, candidate preferences, ideology, individual and 
social influences, and emotional polarization. One of our findings was that content charged with 
joyful emotions leads to emotional polarization, while sadness and fear results in emotional 
convergence. This is a useful insight in the search for the design of socially more responsible 
recommender algorithms that aim at mitigating the polarization effects of today’s filter bubbles.  

An interesting question refers to the possibility to burst the filter bubble by 
supplementing one’s individual preferences with preferences of one’s friends. Some general 
indications of this relationship can be seen when comparing Figures 4 and 5. On the one hand, it 
shows that joy is a more prevalent cause of both polarization and one’s individual preferences. 
On the other hand, we detect sadness in the cases of both social biasing and convergence for 
Clinton and in the cases of individual biasing and polarization for Trump. This suggests that 
there are some relations, but that any attempt of fortifying one’s individual preferences with 
emotional preferences of friends might require conditional distinction (i.e. between Clinton and 
Trump supporters, especially the week after the election).  

Three considerations arise from this finding. First, it might be that improved ways of 
categorization of one’s social environment would help to find a clearer pattern. In our case, the 
preferences of the social environment stem from the subjects’ imagination. This has the potential 
to capture characteristics of the social environment that are particularly relevant for the 
individual, but comes with selection bias. It would be worthwhile to explore the benefits and 
drawbacks further. Second, it might be that the well-established distinction between individual 
and social influences in online polarization (Bakshy et al., 2015) is not the right way out of the 
echo chamber. It might be that other approaches, such as our proposal to focus on the involved 
emotions, will turn out to be the more promising approach, independent if the source of influence 
is one’s own past or one’s social environment. Another provocative suggestion that arises from 
our results is the hypothesis that algorithms communicate different emotions to and from people 
of different political spectra. We found that algorithms pick up and recommend more extreme 
joy and valence (affect) among liberals and Clinton supporters, and more harsh emotions among 
conservatives and Trump supporters (disgust, anger, fear). Our results do not allow for a clear 
picture in this regard, but our presented methodology allows looking deeper into this issue.  

There are at least four limitations of our study. First, we work with a limited distinction 
among individual differences. While we distinguished among political ideology and candidate 
preference, this study has for example not analyzed differences in psychological characteristics 
of users. Research in the field of message framing has shown that people’s motivations are 
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subject to individual variations that will cause them to experience emotionally evocative message 
as a function of those individual differences (Yan, Dillard, & Shen, 2012). Second, while we 
controlled for the initial condition of videos on YouTube, we did include a separate control 
group in this analysis. Third, while candidate preferences tend to be fairly stable over the course 
of an election, emotions toward candidate were not measured at the same time that the statements 
used to generate search terms were selected. This assumes that the affective responses toward the 
candidates did not change between online survey and when people came into the lab. And last 
but not least, we derived the video emotions from scraped titles, descriptions, and transcripts, 
which facilitates computational semantic analysis. This allowed us to focus on our other 
methodological explorations, but might not be accurate. We recommend that studies that are 
more substantial use multimedia processing techniques or human coding to reduce the 
measurement error.  

Finally, the study serves as a demonstration of how the mathematical theory of 
communication can be used both to quantify human-machine communication, and to test 
hypotheses in the social sciences. While we could have done a similar analysis with variance-
based correlations and structural equations, we find the interpretation of our nonlinear entropy 
measure particularly intuitive. We started by conceptualizing the proactive role of algorithms in 
today’s digital landscape as a communication channel between human a machine. The 
mathematical theory of communication provides a natural framework to measure information 
flows in communication channels with one single measure: bits. Of course, successful 
communication between A and B also creates a correlation between A and B, which is why 
traditional correlation based analysis would also work in our case. However, the information 
theoretic approach is more natural for the modeling of communication channels. While this 
approach of measuring communication channels was traditionally reserved for technological 
systems, its adoption for socio-technology systems is not only justified by the theoretical 
appropriateness, but also by the practical fast-paced human-machine merger that characterizes 
out modern communication landscape. As humans increasingly communicate with algorithms, it 
makes sense to conceptualize both with a common methodological framework. 
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